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Abstract

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement
strategies. The objectives of this project were to isolate, characterize, and map a comprehensive set of SSR markers for maize
(Zea mays L.). We developed 1051 novel SSR markers for maize from microsatellite-enriched libraries and by identification
of microsatellite-containing sequences in public and private databases. Three mapping populations were used to derive map
positions for 978 of these markers. The main mapping population was the intermated B73 x Mol7 (IBM) population. In
mapping this intermated recombinant inbred line population, we have contributed to development of a new high-resolution
map resource for maize. The primer sequences, original sequence sources, data on polymorphisms across 11 inbred lines,
and map positions have been integrated with information on other public SSR markers and released through MaizeDB at
URL:www.agron.missouri.edu. The maize research community now has the most detailed and comprehensive SSR marker set
of any plant species.

Introduction

Marker-dense genetic maps contribute greatly to
our understanding of evolutionary processes, enable
marker-assisted selection and mapping of agronomic

Seed of the lines of the IBM population have been deposited and
are available from the Maize Genetics Cooperation Stock Center,
Urbana, IL, w3.ag.uiuc.edu/maize-coop.

Product names are necessary to report factually on available data;
however, the participating parties in the project neither guarantee
nor warrant the standard of the product. The use of a brand name
does not imply any approval of the product to the exclusion of others
that may also be suitable.

traits and facilitate many aspects of crop improvement.
In addition, high-resolution genetic maps are essential
for positional cloning of genes and for providing the
genetic framework for physical map construction. Sig-
nificant progress in plant genome mapping has been
made by using of specialized mapping populations and
molecular markers suitable for genome-wide, high-
throughput mapping. Many linkage maps in plants are
based on immortalized F, or recombinant inbred line
(RIL) populations (Burr et al., 1988; Gardiner et al.,
1993; Roder et al., 1998; Davis et al., 1999; Tem-
nykh er al., 2000). Recently, populations of intermated
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recombinant inbred lines (IRIL) have been created in
Arabidopsis and maize (Zea mays L.) (Liu et al., 1996;
Lee et al., 1999). Intermated recombinant inbred line
populations provide enhanced genetic resolution for
short linkage distances as a result of accumulation of
informative meioses through generations of random
mating (Hanson 1959a, b; Covarrubias-Prieto et al.,
1989; Beavis et al., 1992; Liu et al., 1996).

The primary technology for mapping of plant
genomes has evolved from restriction fragment length
polymorphisms (RFLP), detected by hybridization,
to sequence-derived PCR-based markers, such as se-
quence tagged sites, microsatellites, and single nu-
cleotide polymorphisms (Rafalski and Tingey, 1993;
Roder et al., 1998; Cargill et al., 1999). A microsatel-
lite, or simple sequence repeat (SSR), consists of
direct tandem repeats of short (2—6) nucleotide mo-
tifs (Tautz et al., 1986). For a wide range of genetic
and population studies, SSR markers are a suitable
choice based on cost, labor, and genetic informa-
tiveness. Microsatellite-based linkage maps have been
constructed for a wide variety of species including
man (Dib et al., 1996), mouse (Dietrich et al., 1996),
and plants such as maize (Chin et al., 1996; Taramino
and Tingey, 1996), rice (Temnykh ef al., 2000), wheat
(Bryan et al., 1997; Roder et al., 1998), potato (Mil-
bourne et al., 1998), and soybean (Akkaya et al., 1995;
Cregan et al., 1999).

Microsatellites are commonly identified through
(1) screening of small-insert or microsatellite-enriched
genomic libraries by hybridization with oligonu-
cleotide primers followed by sequencing, and/or (2)
searching DNA sequence databases. Database search-
ing is only suitable for development of SSR markers
in plant species well represented in public databases.
Maize is one of the better-characterized plant species
with 79 996 entries available in the GenBank data-
base (indexing date January 2001). As more plant
expressed sequence tag (EST) and genome sequenc-
ing projects become established, public databases will
contain an abundance of sequence data that may be
exploited for SSR development.

The limited number of publicly available SSR
markers has been a limiting factor on many areas of
maize research. The objectives of this study were to
develop and map SSR markers for maize and release
this information to the scientific community through
MaizeDB (www.agron.missouri.edu/ssr.html). We
have developed over 1000 new SSR markers derived
from microsatellite-enriched genome libraries and by
systematic searching of publicly available maize DNA

sequences. Three mapping populations were exploited
to map as many SSR polymorphisms as possible. A
set of common SSR and RFLP markers were placed
on all three populations to integrate the map position
information. In addition, a subset of existing, publicly
available SSR markers was also mapped on these pop-
ulations to facilitate integration of newly developed
SSR maps with prior versions of maize genetic maps.

Materials and methods

Development of SSR markers

The SSR markers developed by the Missouri Maize
Project (MMP) were named with the prefix umc for
University of Missouri-Columbia, sequentially, start-
ing with 1001. Numbers lower than 1000 were re-
served for RFLP markers. The development of SSR
markers umcl1001-umc2070 (with about 20 numbers
corresponding to markers not retained in the released
set) is detailed in this manuscript. There were seven
major sources of DNA sequences used to derive the
SSRs (Table 1).

A. The largest source of sequences for deriv-
ing the SSRs was public maize sequences available
through GenBank. All maize sequences were period-
ically downloaded from GenBank and examined for
novel microsatellite-containing sequences. During this
project, the number of maize sequences in GenBank
increased greatly due to contributions by the Stanford
Maize EST Project (www.zmdb.iastate.edu).

B. Microsatellite containing maize sequences
were provided to the MMP by Monsanto Company,
Chesterfield, MO. By agreement, sequences that
yielded mappable SSR markers were deposited in
GenBank by the MMP.

C. Additional maize EST sequences were provided
by Riccardo Velasco and Richard Thompson, Max
Planck Institut fiir Ziichtungsforschung, Koéln, Ger-
many. These EST sequences were derived from a
maize silk cDNA library from the inbred line W{9.

D. The public maize EST sequences have been
assembled into contigs by The Institute for Genomic
Research (TIGR) (www.tigr.org/tdb/zmgi). Although
all the sequences for the individual ESTs are available
through GenBank, the TIGR assembly may contain
longer flanking sequence that aids primer develop-
ment. After primer development was performed on the
individual EST sequences, the TIGR EST assemblies
were examined for additional novel SSR primer pairs.
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Table 1. Summary of sequence origin for SSR marker development.

Source of DNA Unique Polymorphic UMC names  Mapped  Percentage of unique
primer pairs  among 11 inbreds  received pairs mapped

Sequence data

GenBank 2331 1220 749 684 29.3

Private (Monsanto) 971 317 146 144 14.8

Silk Library 93 41 28 28 30.1

TIGR Contigs 119 39 23 23 19.3

Genomic libraries

GIS libraries! 324 57 46 41 12.7

LARS libraries? 205 73 47 46 22.4

Pstl library3 40 21 12 12 30.0

Total 4083 1768 1051 978 24.0

1Sequences were derived from enriched libraries (GA and CA motifs) developed by Genetic Identification Ser-

vices.

2Sequences were derived from enriched libraries (GA, CA, CTA and CTG motifs) developed by Long Ashton

Research Station and the Missouri Maize Project.

3Sequences were derived from small insert, PstI library developed by the Missouri Maize Project.

E. Genomic libraries enriched for GA and CA
repeats from the inbred line B73 were constructed
for the MMP by contract with Genetic Identification
Services (GIS), Chatsworth, CA. Plasmid DNA for
individual clones from these libraries was sequenced
with an Applied Biosystems 310 automated sequencer
(Applied Biosystems, Foster City, CA) by means of
dRhodamine chemistry following the manufacturer’s
protocols.

F. A second set of microsatellite-enriched genomic
libraries was constructed at the Long Ashton Re-
search Station (LARS), according to Edwards et al.
(1996). Libraries were enriched for GA, CA, CTA,
and CTG motifs. For each of the GA and CA motifs,
two libraries of one and of two cycles of enrich-
ment were constructed; for the CTA and CTG motifs
single libraries from two cycles of enrichment were
prepared. Individual clones from these six libraries
were transferred into 384-well plates, grown, and
spotted on high-density filters by the Clemson Uni-
versity Genomics Institute, Clemson, SC. Filters were
hybridized with 3?P-labeled GA-, CA-, CTA-, and
CTG-oligonucleotides and washed at 65 °C (60 °C for
CT-oligonucleotide). Positive clones were identified
by using High-Density Filter Reader software devel-
oped by Incogen, Clemson, SC (Version 1.0, 2000).
After re-arraying, plasmid minipreps were performed
in 96-well plates and DNA was sequenced bidirec-
tionally using dRhodamine chemistry on an Applied
Biosystems 3700 automated sequencer. About 30% of
the clones were positive by hybridization in the single

enrichment libraries and ca. 60% of the clones were
positive in the double enrichment libraries.

G. In conjunction with the RFLP mapping project
in the MMP, a small-insert PsfI library was con-
structed and individual clones bidirectionally se-
quenced using the Applied Biosystems 3700 auto-
mated sequencer. A more detailed description of the
library will be presented in a separate publication
(Davis et al., unpublished).

BLAST and primer design

SSRFINDER was developed by the MMP bioinfor-
matics group to connect several development steps
(search for SSR, primer design, and similarity com-
parison) into one automated process. SSRFINDER s
based on a set of integrated Perl scripts. It used the
Basic Local Alignment Search Tool (BLAST) package
from National Center for Biotechnology Information,
Bethesda, MD, and the Primer3 application from the
Whitehead Institute, Cambridge, MA. The process
is as follows. Nucleotide sequences were searched
for microsatellite repeats using Perl’s built-in pattern
matching. All exact simple sequence di-nucleotide
motifs of six repeats or greater and 3- to 7-nucleotide
(nt) motifs of four repeats or greater were marked. The
repeat region and surrounding sequence (ca. 150 bases
to either side) were extracted and used in Primer3 for
primer design. The primer design conditions were: T,
60-65 °C, target 63 °C with the difference in the Tp,
of the two primers less than 1 °C and minimal primer
length 20 nt, maximum primer length 28 nt, target 24
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Figure 1. Genetic linkage maps of IBM (B73 x Mo17 IRIL) and two IF, (Tx303 x CO159 and T218 x GT119) maize populations. Genetic
distances are calculated with the Haldane mapping function (Haldane, 1919). Loci common to different populations are connected by gray lines.
RFLP loci are colored in blue. The names of RFLP loci are consistent with prior maps wherever possible (Davis et al., 1999; Wilson et al.,
1999). The SSR loci for markers developed from EST and gene sequences are colored in red, other SSR loci are colored in black. The font style
of the loci maintains the standard MAPMAKER output format; loci next to the chromosome are framework loci at the positions indicated by
the hatch markers. Bold loci next to these indicate non-informative framework markers. Loci marked in italics indicate loci placed to interval
only. The > symbol indicates a continuation of that line of loci directly below. Loci revealing segregation distortion are indicated as *P < 0.05,
** P < 0.01. Small dashed bars on the left of the maps indicate map regions skewed toward B73, Tx303, and T218 alleles; solid bars indicate
regions skewed toward Mol17, CO159, and GT119 alleles; larger dashed bars indicate regions with excess of heterozygotes.

nt. If suitable primers were designed, the extracted
sequence was compared by BLAST to a database of
all previously designed primers. This resulted in de-
velopment of a non-redundant set of candidate primers
for synthesis. Finally, new candidate primer sequences
were added to the BLAST database for comparison to
additional sequences.

Screening for polymorphism and mapping

Both newly designed and previously developed SSR
primers were tested for polymorphism using a panel of
11 maize inbred lines and one F; (see SSR screening

images in MaizeDB; www.agron.missouri.edu/images.

html). The mapping populations used in this study
were: (1) the intermated B73 x Mol7 (IBM) popu-
lation, consisting of 277 F7.g recombinant inbred lines
from the cross B73 x Mol7 that were intermated for
four generations at the F; stage of line development
(Lee et al., 1999; Casa et al., 2000); (2) Tx303 x
CO159 IF;, consisting of 54 immortalized F» plants
(Gardiner et al., 1993; Davis et al., 1999); and (3)
T218 x GT119 IF,, consisting of 93 immortalized F»
plants (McMullen, unpublished). The inbred parents
of these populations come from diverse germplasm
sources, increasing our ability to map SSRs on at least
one of the populations. If a marker was polymorphic
across multiple parental pairs, the order of choice for
mapping was: 1, IBM; 2, Tx303 x CO159 IF;; and
3, T218 x GT119 IF,. The main criteria used for
selecting primer pairs to be identified as umc SSRs
was the clear ability to obtain a map position on at
least one of our populations. A few additional pairs
were named that we were not able to map, but were
polymorphic in multiple inbred comparisons. Addi-
tional novel SSR primer sequences were released to
MMP from the LARS group. These SSRs, designated
mmcXXXX, were screened against the panel of inbreds
and mapped. Pioneer Hi-Bred International also pro-
vided novel primer sequences and map scores on the
IBM population for SSR primers with the designation
phiXXXXXX, (referred to as the high-number phi’s to

be distinguished from prior phi’s (phi001-phil30). To
facilitate map comparisons, additional SSR markers
developed by Brookhaven National Laboratory and Pi-
oneer Hi-Bred International were mapped on the three
populations.

The PCR reactions were performed using a
PTC-225 thermocycler (MJ Research, Watertown,
MA.) with a ‘touchdown’ profile slightly modi-
fied from Chin et al. (1996). The PCR prod-
ucts were separated on 4% SFR agarose (Amresco,
Solon, OH) gels and visualized by ethidium bro-
mide staining. All protocols for high-throughput
SSR screening/mapping are available from MaizeDB
(www.agron.missouri.edu/ssr.html). All of our SSR
screenings were performed with high-resolution
agarose gels. Clearly, additional SSR polymorphism
could be obtained by analysis with fluorescent-tagged
SSR primers and automated sequencers.

Map construction

Linkage maps were constructed with MAPMAKER
Version 3.0 for UNIX (Whitehead Institute, Cam-
bridge, MA). The ‘ri-self’ option was used for map-
ping the IBM population and ‘if2 intercross’ option
was used for the Tx303 x CO159IF, and T218 x
GT119 IF, populations. A framework of RFLP mark-
ers was selected for each mapping population to facili-
tate in chromosome assignment and map comparisons.
Simple sequence repeat loci were assigned to chro-
mosomes at log likelihood difference (LOD) 4.0 with
frameworks of 184, 90, and 75 RFLP markers for
the IBM, Tx303 x CO159 IF,, and T218 x GT119
IF, populations, respectively. The ‘build’ command
(LOD 4.0) was used to incorporate SSR markers into
the frameworks. Local orders were verified with the
‘ripple’ command (window size of 5 loci, LOD 3.0).
The remaining loci were assigned to intervals with
the place command (LOD 2.0). Map distances were
calculated based on the Haldane mapping function
(Haldane, 1919).
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Data storage and handling

A laboratory information management system (LIMS)
was developed by the MMP bioinformatics group for
storage and tracking of information streams. Main
LIMS components, which are several relational data-
bases, were used to store raw DNA sequence data,
primer sequences, and screening and mapping scores
as well as results of mapping experiments. The LIMS
contains several visual BASIC- and Java-based user
interfaces for data entry and for generating output files
in MAPMAKER format. Data entry into the system
was also performed via automated batch processing
(primarily Perl scripts).

Results and discussion

Development of SSR markers

DNA sequences retrieved from four different data-
base sources were searched for microsatellites (see
sequence data, Table 1). Of 87 516 sequences, 17 839
(ca. 20%) contained SSRs. However, only 9494 con-
tained adequate or appropriate flanking sequence to
permit primer design. After BLAST comparison of
SSR-containing sequences against previously identi-
fied SSRs, 3356 unique primer pairs were designed.
Of the SSR markers derived in this project, 71%
were from GenBank sequences, mostly from EST
sequences. Of the 1051 SSRs, we can identify at
least 639 that were generated from EST sequences, of
these 532 were derived from sequences produced by
Stanford EST project (www.zmdb.iastate.edu).

The proportion of primer pairs that produced
strong amplification products across our inbred line
panel varied from a low of 53% for the enriched li-
braries from GIS to 86% for primers from GenBank
sequence and 88% for primers from TIGR contigs.
The high percentage of successful amplifications from
primers derived from public database sequences, cou-
pled with adequate polymorphism levels, made data-
mining from public sequence our most cost-effective
SSR development strategy.

We also used sequences derived from two sources
of enriched libraries and from random Ps#I inserts for
SSR development (see genomic libraries, Table 1).
From these three sources, we designed 569 unique
primer pairs of which 151 detected more than one
allele against our panel of lines. The efficiency of
SSR development from enriched libraries was often
limited because of short or missing flanking regions.

477

This was particularly common with the trinucleotide
repeat libraries, very long repeat motifs often involved
essentially all of the insert. In our project, a higher per-
centage of primer pairs from enriched libraries failed
to give consistent amplification products than from
EST-sequence-derived primer pairs. We believe that
this was due to SSR candidates being located in re-
peated or complex sequence in the genomic clones as
opposed to lower-copy sequence for the EST-derived
candidates. In addition, redundancy of clones within
the enriched genomic libraries limited the efficiency
of identifying novel SSRs.

There was a strong correlation between number of
repeat units and polymorphism across the 11 inbred
lines. For candidate SSRs with four repeat units only
48% of those giving strong, consistent amplification
showed polymorphism by the agarose gel screening
system. Polymorphism levels increased rapidly with
number of repeat units: 5x 66%, 6x 66%, 7x 79%,
8x 71%, and >8x 86%. By repeat type, dinucleotide
SSR candidates exhibited a polymorphism rate of
74%, trinucleotide candidates 52%, tetranucleotide
candidates 74% and pentanucleotide candidates 81%.
The lower polymorphism rate for trinucleotide candi-
dates was due to the presence of many short (4x or
5x) tri-nucleotide candidates from the EST sequence.
A detailed analysis of the basis of polymorphism
will be presented in a separate publication (Sharopova
et al., unpublished).

A distinct additional benefit of deriving SSRs from
GenBank sequence was the contribution to mapping
maize genes. Of 1734 SSR markers currently avail-
able for maize (MaizeDB, January 2001), 135 have
been developed from sequences of 96 known genes.
Some genes (for example, catalase3 or purple plantl)
contained up to four microsatellites. Of these 135
SSRs 67 were mapped in this study. For 70 of the 96
genes, SSR markers are the only molecular markers
determining map positions as listed in MaizeDB. We
have posted a table on the SSR pages of MaizeDB
(www.agron.missouri.edu/ssr.html) listing the SSRs
derived from defined genes. Together with the SSRs
from ESTs, our results demonstrate the utility of SSR
markers for efficient gene mapping.

SSR linkage maps

IBM linkage map

For the IBM population, a total of 932 loci, includ-
ing 184 RFLP and 748 SSR loci, were placed on
14 linkage groups representing the 10 maize chromo-
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Table 2 Summary of map lengths, loci mapped, framework markers, average map density per SSR locus for the IRIL (IBM) and the

IF, (Tx303 x CO159 and T218 x GT119) populations.

Population Chromosome Average Total
1 2 3 4 5 6 7 8 9 10
IBM
Map length, cM (Haldane) 714.5 538.1 570.2 540.2 518.8 423.7 4327 431.3 388.9 347.7 490.6  4906.1
Number of RFLP loci 30 20 20 22 24 17 12 11 15 13 18.4 184
Number of SSSR loci 115 82 92 77 72 56 71 66 51 66 74.8 748
Framework loci 119 87 92 88 86 64 71 68 61 67 80.3 803
Percentage of loci in framework 82 85 82 89 90 88 86 88 92 85 87 -
Informative framework loci 119 83 88 84 82 62 69 67 59 66 77.9 779
Loci assigned to interval 26 15 20 11 10 9 12 9 5 12 12.9 129
Average map density per SSR locus,cM 62 66 62 70 72 76 61 65 76 53 66 -
T x 303 x C0159
Map length, cM (Haldane) 280.1 199.1 163.3 194.3 183.8 167.8 159.9 180.4 143.8 157.3 183.0 1829.8
Number of RFLP loci 12 10 10 11 9 8 6 9 8 7 9.0 90
Number of SSR loci 69 47 46 58 48 45 39 49 27 29 45.7 457
Framework loci 65 31 41 46 40 38 32 35 22 31 38.1 381
Percentage of loci in framework 0 54 73 67 70 72 71 60 63 86 70 -
Informative framework loci 58 28 35 37 38 32 27 31 19 26 33.1 331
Loci assigned to interval 16 26 15 23 17 15 13 23 13 5 16.6 166
Average map density per SSR locus,cM 4.1 42 3.6 34 38 37 42 47 53 54 41 -
T218 x GT119
Map length, cM (Haldane) 220.0 215.8 170.3 188.7 182.8 148.1 139.0 165.5 151.5 134.7 171.6 1716.4
Number of RFLP loci 10 9 10 9 6 7 5 7 6 6 7.5 75
Number of SSR loci 43 27 25 42 31 18 28 35 19 20 28.8 288
Framework loci 49 33 29 40 31 17 22 30 18 21 29 290
Percentage of loci in framework 92 92 83 78 84 68 67 71 72 81 79 -
Informative framework loci 44 32 28 39 27 17 20 27 18 20 27.2 272
Loci assigned to interval 4 3 6 11 6 8 11 12 7 5 7.3 73
Average map density per SSR locus,cM 51 80 68 45 59 82 50 47 80 67 63 -
IBM map expansion relative to:
Tx303 x CO159 IF, 26 27 35 28 28 25 27 24 27 22 27
T218 x GT119 1IF, 32 25 33 29 28 29 31 26 26 26 29
Average 29 26 34 28 28 27 29 25 26 24 28

somes (Figure 1 and Table 2). Chromosomes 2, 5,
6, and 9 were initially represented by two unlinked
segments. These segments were assembled into single
linkage groups based on maize reference maps. A total
of 803 loci (87%) were placed on a framework with
a total map length of 4906.1 cM (347.7-714.5 cM
per chromosome). Of these framework loci 24 were
non-informative, co-segregating with other framework
markers. The remaining 129 loci (13%) were assigned
to intervals. The IBM map has an average SSR marker
density of 6.6 cM.

Tx303 x CO159 IF; linkage map

A total of 547 loci, including 90 RFLP and 457 SSR
loci, were placed on the Tx303 x CO159 IF; link-
age map (Figure 1 and Table 2). Of these, 381 (70%)
formed a framework with total map length of 1829.8
cM (143.8-280.1 cM per chromosome). Of the frame-
work loci 50 co-segregated with other framework loci.
A total of 166 loci (30%) were placed to intervals. The
Tx303 x CO159 IF, map has an average SSR marker
density of 4.1 cM.



1218 x GT119 IF; linkage map

A total of 363 loci, including 75 RFLP and 288 SSR
loci, were placed on the T218 x GT119 IF, map (Fig-
ure 1 and Table 2); 290 loci (79%) were placed on
a framework with a total map length of 1716.4 cM
(134.7-220.0 cM per chromosome). Eighteen frame-
work loci co-segregated with other framework loci. A
total of 73 loci (21%) were assigned to intervals. The
T218 x GT119 IF; map has an average SSR marker
density of 6.3 cM.

Map consistency

A total of 78 SSR and 39 RFLP markers were mapped
on all three populations to provide cross-reference
points. As indicated by the lines between chromo-
somes on Figure 1, marker order was quite consistent
and in agreement with previously published maps.
Only 15 out of 242 markers mapped on more than
one population showed potential discrepancies in lo-
cal orders. Most discrepancies were found for loci
placed only to interval on at least one of the maps.
There were only two pairs of loci, placed on the
framework of chromosomes in both populations, with
inverted orders. These two pairs of loci were umc65a
and umc1887 on chromosome 6 of IBM and Tx303 x
CO1591F,, and bni2.36 and umc1889 on chromosome
8 of Tx303 x CO159 IF, and T218 x GT119 IF,.

Map lengths and resolution

The IF, maps had similar total lengths (1829.8 cM
for Tx303 x CO159 IF; and 1716.4 cM for T218
x GT119 IF,. The total length of the IBM map
(4906 cM) was expanded nearly 3-fold relative to the
IF; maps (Table 2). The three-fold expansion of the
IBM map meets the theoretical prediction for four
rounds of random mating (Liu et al., 1996). The larger
population size and resolution power gained from
random mating greatly increases the fine-mapping po-
tential of the IBM population over previous maize
maps. Only 129 out of 983 loci analyzed were not
placed uniquely to the framework on IBM map. The
map resolutions for Tx303 x CO159 IF, and T218
x GT119 IF, populations were equal to 0.9 cM and
0.5 cM, respectively. The resolution on the IBM map
was 0.2 cM; however, because of the three-fold map
expansion, this is equivalent to 0.07 cM for an F, pop-
ulation, or approximately 15 times the order resolving
power of the Tx303 x CO159 IF,. For example, the
interval umc1889—umc1846 on chromosome 8 showed
no recombination in the T218 x GT119 IF, popula-
tion and was not resolved unambiguously in the Tx303
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x CO159 IF, population. However, the loci were
placed uniquely on the IBM map with 5.8 cM sepa-
ration. The IBM population has been chosen by the
MMP to provide the high-resolution genetic map nec-
essary for a framework for developing a physical map
for maize. An integrated map on the IBM population
with over 1000 RFLP and the 748 SSR loci reported
in this manuscript is under construction by the MMP
(G. Davis et al., unpublished).

Segregation distortion

In both IF; populations the majority of markers fit the
expected 1:2:1 segregation ratio (P<0.01). Significant
deviation from expected segregation was observed for
only 28 loci in Tx303 x CO159 IF; and for 38 loci
for T218 x GTI119 IF, population (Figure 1). The
largest distorted region consisted of 24 loci, spanning
73.7 ¢cM, on chromosome 5 on the T218 x GT119 IF,
map. All 24 distorted loci on chromosome 5 had an
excess of GT119 alleles.

There are questions as to the appropriate test sta-
tistic to assess segregation distortion in an intermated
population. Liu et al. (1996) reported higher lev-
els of segregation distortion for an IRIL population
for Arabidopsis. These authors pointed out that in-
creased segregation distortion is expected solely be-
cause of increased recombination. Increased recom-
bination lengthens the map, thereby increasing the
number of independent tests represented by markers
across the genome. In addition, it is not clear how
genetic drift, acting during the random mating gen-
erations, affects the allele expectations. Genetic mod-
eling experiments are needed to define the proper test
statistic before a direct comparison of the levels of seg-
regation distortion between standard and intermated
populations can be made.

In contrast to the F, populations, 424 out of
983 loci for the IBM map deviated from the 1:1
expected ratio (P<0.01) using the standard x2 test.
The widespread occurrence of segregation distortion
for miniature inverted repeat transposable element
(MITE) markers has been previously reported for the
IBM population (Casa et al., 2000). In our analy-
sis, chromosomes 1, 2, 3, 7, 8, and 10 all exhibited
segregation distortion affecting centromeric regions.
Although segregation within a distorted region was
skewed toward one of the parental genotypes, differ-
ent distorted regions on the same chromosome could
contain opposite preferred alleles. For instance, two
of three large distorted regions on chromosome 1 had
an excess of the allele from B73 (20 and 29 loci) while
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the third region (17 loci) was skewed toward the Mo17
allele.

Deviation from the expected Mendelian segrega-
tion ratios was previously reported for many mapping
populations (Lyttle, 1991; Harushima et al., 1996; Xu
et al., 1997). Particularly interesting cases are those in
which the same distorted genome regions are shared
by the different crosses. The umci126—umci08 region
on chromosome 5 was distorted on all three maps
developed in this study (Figure 1). This region has
been previously reported as distorted in the Tx303 x
CO159 F, population (Gardiner et al., 1993) and in
an F» population of a maize-teosinte cross (Doebley
etal., 1990). Gardiner et al. (1993) proposed that pres-
ence of a gametophytic factor, ga2, caused the skewed
segregation in this region. There is no evidence that
distorted segregation influenced order of markers con-
sistent with the previously report for the Arabidopsis
IRIL population (Liu et al., 1996). For cereals, the
identification of genomic regions exhibiting consistent
segregation distortion has been previously reported for
wheat chromosome 5D (Faris et al., 1998).

Distribution of SSR markers across chromosomes

A non-uniform distribution of markers across genetic
maps has been reported for many crops (Gill et al.,
1996a, b; Vuylsteke et al., 1999; Haanstra et al.,
1999; Kunzel et al., 2000). While there is no obvious
statistical test for randomness, by visual inspection,
centromeric regions, for all three SSR maps, have
higher marker density than distal regions for chromo-
somes 2, 3, 5, 7, 8, and 10. This result may reflect
non-uniform distribution of recombination rates across
chromosomes. Because of the accumulation of re-
combination breakpoints through successive rounds of
intermating, a magnification of the non-uniform dis-
tribution of recombination would be expected for the
IBM map. The IBM map displays multiple regions of
high and low marker density for many chromosomes
(e.g., chromosomes 6, 7, and 9). This may reflect vari-
able recombination rates in multiple, specific regions
along most chromosomes.

Public SSR resources for maize

A major goal of the SSR development project in the
MMP is to provide uniform, comprehensive informa-
tion on all public SSRs for maize. Integrated in the

MaizeDB SSR pages (www.agron.missouri.edu/ssr.html)

are data on primer sequences, accession numbers for
original sequences, repeat type and length, map po-

sitions, and links to screening images. We present
screening images for essentially all the 1734 public
SSR markers. In addition, we are creating a table in
MaizeDB for the screening results of all primers de-
signed from EST or gene sequences. These primers
have potential use as sequence tagged site markers.
The SSR maps in this manuscript are available from
MaizeDB, in both graphic and text formats, as are
the underlying map scores. Through the SSR markers
and maps developed by this project and the underlying
SSR resources documented in MaizeDB, the maize
research community now has the most detailed and
comprehensive SSR marker set of any plant species.
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